

## **Basic Concept**

**Integer:** complete numbers are called integers

Such as -3, -2, -1, 0, 1, 2 .....etc.

They are represented by I or Z.

Natural Numbers: positive integer are called natural numbers they are represented by

 $N = 1, 2, 3, 4 \dots$ 

Whole Numbers: non-negative integers are called whole numbers they are represented by

 $W = 0, 1, 2, 3, \dots$ 

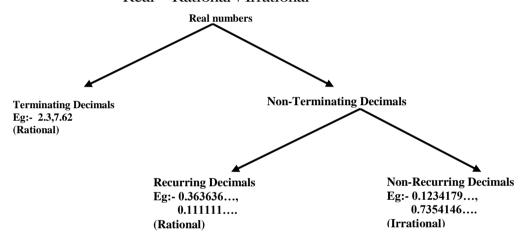
**Rational Numbers**: Numbers those can be written in the form of p/q where p, q are integers

Such as 2/3, 1/3, 1/2...etc. They are represented by Q

<u>Irrational numbers</u>: Numbers those are not rational are called irrational numbers such as  $\sqrt{3}, \sqrt{2}, \sqrt{5}, \pi, \dots$ 

Real Numbers: all rational and irrational numbers are called real numbers they are represented by R.

#### Real = Rational + Irrational



Note: (i) Integers are discrete numbers and real numbers are continuous numbers.

(ii)Discrete numbers are written in the form of the set and continuous numbers are written in the form of intervals.

**Prime numbers:** positive integers which are divisible by only 1 or itself are called prime numbers, eg. 2,3,5,.....

Ex. If p is a positive integer then prove that both (n+3) and (n+8) cannot be simultaneously prime numbers.

Composit numbers:- Integers which are divisible by any other number other than 1 and itself are composite numbers such as 4,9,12,.....

Coprime Numbers: Two positive integers a and b are co-prime if and only if HCF of a,b is 1,eg: 7 and 9.

#### **Inequality**

These signs are use for compression of two real numbers. Complex numbers can not be compared except equality. There are four sign of inequality –

Let a and b are two real numbers

(1) a > b "a is greater than b"Ex. 3 > 2(2)  $a \ge b$  "a is greater or equal to b"Ex.  $3 \ge 2$ (3) a < b "a is less than b"Ex. 2 < 3(4)  $a \le b$  "a is less than or equal to b"Ex.  $2 \le 3$ 

#### **Properties of inequality:**

(1) Any real numbers can be added or subtracted to both side of an inequality

$$a > b$$
  
$$a \pm k > b \pm k$$

- (2) If a positive real number is multiplied both sides of an inequality then the inequality does not change  $a > b \implies ak > bk$ ;  $k \in R^+$
- (3) if a negative real number is multiplied both sides of an inequality then the inequality change ⇒ a > b ⇒ ak < bk</p>

- (4) if both sides of an inequality are positive then the inequality will change by taking the reciprocal a > b a,  $b > 0 \Rightarrow \frac{1}{a} < \frac{1}{b}$
- (5) If both sides of an inequality are +ve then square root can be taken  $\begin{cases} a > b \\ \sqrt{a} > \sqrt{b} \end{cases}$  a, b > 0.
- (6) If both sides of an inequality are +ve then square can be taken both sides  $\begin{cases} a > b \\ a^2 > b^2 \end{cases}$  a, b > 0.
- (7) Two same inequalities can be added  $\begin{cases} c > d \\ a+c > b+d \end{cases}$
- (8) Note: subtraction is not always true it is only possible if all the side are +ve.
- (9) Two same inequality can be multiplied if both sides are +ve

a > b

c > d a, b, c, d > 0.

ac > bd

(i) Find the values of x for which  $-5 \le \frac{2-3x}{4} \le 9$ . **Ex:-**

(ii) Find the solution set of the inequation  $\frac{1}{2} \left( \frac{3}{5} x + 4 \right) \ge \frac{1}{3} (x - 6)$ .

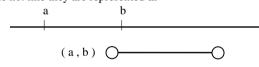
## **Intervals:**

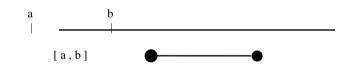
- (i) If a and b are two real no's such that a < b. Then set  $\{x: a < x < b\}$  is called the **open interval** from a to b and is written as (a, b).
  - (ii) The set  $\{x: a \le x \le b\}$  is called

(i) if x < 2

**closed interval** from a to b and is written as [a, b].

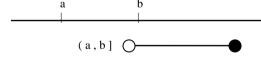
On the no. line they are represented as

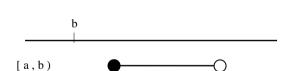




(iii)Similarly we define **semi open** interval =  $\{a, b \} = \{x : a < x \le b \}$ 

and **semi closed** interval =  $[a, b) = \{x : a \le x < b\}$ .





**Point of inversion**: let a factor (x-2) where x is variables

(x-2) > 0 + ve

(x-2) < 0 –ve

$$(x-2)$$
-ve  $(x-2)$ +ve

i.e. factor (x-2) changes its sign in the neighborhood of '2' so 2 is the point of inversion of the factor (x-2).

Absolute value: the absolute value of any real no. a is denoted by | a | and an it is defined as

$$\begin{vmatrix} a \end{vmatrix} = \begin{cases} +a & a \ge 0 \\ -a & a < 0 \end{cases}$$
$$|2| = 2 \quad 2 \ge 0$$

|-2| = -(-2) = 2 2 < 0

Note: the absolute value of a real no. is always +ve.

# Logarithm:-

(exponential form)  $b^y = x \Leftrightarrow y = \log_b x$  (logarithmic form)

Where b is called the base and x is argument.

 $y = \log_b x$  is defined if and only if x > 0 and b > 0  $(b \ne 1)$ 

# Properties of logarithm:-

$$1.\log_b 1 = 0$$

$$2.\log_b b = 1$$

$$3.\log_b(m\times n) = \log_b m + \log_b n$$

$$4.\log_b\left(\frac{m}{n}\right) = \log_b m - \log_b n$$

$$5.\log_b m^n = n\log_b m$$

$$6.\log_{b^n} m = \frac{1}{n}\log_b m$$

$$7.\log_n m = \frac{\log_b m}{\log_b n}$$
 (base change formula)

$$8.\log_b a = \frac{1}{\log_a b}$$

$$9.b^{\log_b m} = m$$

$$10.\log_b a.\log_c b.\log_a c = 1$$

#### **Greatest integer function:-**

The function y = [x] is called the greatest integer function where [x] denotes the greatest integer just less than or equal to x, eg:

$$[2.3] = 2, [-5.86] = -6, [5] = 5$$

Note: x - [x] is called the **fractional part of** x and is denoted by  $\{x\}$ , eg:  $\{2.3\} = 0.3, \{-5.6\} = 0.4, \{8\} = 0$ 

So any real number can be written as,

$$x = [x] + \{x\}$$

# **Exercise**

# <u>Inequality</u> 1. Solve the following inequality:-

(a) 
$$x^2 - 16 < 0$$

(b) 
$$9 - x^2 > 0$$

(c) 
$$x^2 - 5x + 6 > 0$$
 (d)  $x^2 - 10x + 21 < 0$   
(g)  $3x^2 - 10x + 3 \ge 0$  (h)  $x^2 - x + 1 < 0$ 

$$(x) x^2 - 10x + 21 < 0$$

(e) 
$$x^2 + 2x - 15 \ge 0$$

(f) 
$$2x^2 - 3x - 2 \le 0$$

(g) 
$$3x^2 - 10x + 3 \ge 0$$

(h) 
$$x^2 - x + 1 < 0$$

2. The number of integral solutions of 
$$x^2 - 3x - 4 < 0$$
, is

3.If 
$$2-3x-2x^2 \ge 0$$
, then

(a) 
$$x \le -2$$

(b) 
$$-2 \le x \le \frac{1}{2}$$

(c) 
$$x \ge -2$$

$$(d) x \le \frac{1}{2}.$$

4. The solution of 
$$6+x-x^2 > 0$$
, is

(a) 
$$-1 < x < 2$$

(b) 
$$-2 < x < 3$$

(c) 
$$-2 < x < -1$$

$$(a) \frac{x}{x+1} > 0$$

(b) 
$$\frac{2x+1}{5-x} \ge 0$$

(c) 
$$\frac{x-1}{x-2} > 2$$

(d) 
$$\frac{x+2}{x-1} < 4$$

(e) 
$$\frac{x^2 - 7x + 10}{x - 3} < 0$$

(f) 
$$\frac{x^2 - 8x + 15}{x^2 - 9x + 14} < 0$$

(g) 
$$\frac{x^2 - 4x - 21}{x^2 + 3x - 10} \le 0$$
 (h)  $\frac{3x^2 + 7x + 4}{x^2 + x + 1} \ge 0$ 

(h) 
$$\frac{3x^2 + 7x + 4}{x^2 + x + 1} \ge 0$$

6. The solution set of the inequation  $\frac{x+4}{x-3} \le 2$ , is

$$(a)(-\infty,3)\cup(10,\infty)$$

$$(c)(-\infty,3)\cup[10,\infty)$$

(d)N.O.T. .

7. The solution set of the inequation  $\frac{2x+4}{x+1} \ge 5$ , is

(a) 
$$(1,3)$$

$$(c)(-\infty,1)\cup[3,\infty)$$

(d) N.O.T

8. The solution of the inequation  $\frac{4x+3}{2x-5} < 6$ , is

(a) 
$$(5/2,33/8)$$

$$(b)(-\infty,5/2)\cup(33/8,\infty)$$

$$(c)(5/2,\infty)$$

 $(d)(33/8,\infty).$ 

9. The number of integral solutions of  $\frac{x+1}{x^2+2} > \frac{1}{4}$ , is

(d)N.O.T. .

10. The number of integral solutions of  $\frac{x+2}{v^2+1} > \frac{1}{2}$  is

(d)N.O.T.

11. The solution set of the inequation  $\frac{x^2 - 3x + 4}{x + 1} > 1, x \in R$ , is

$$(a)(3,\infty)$$

(b)
$$(-1,1)$$
∪ $(3,∞)$ 

$$(c)[-1,1] \cup [3,\infty)$$

(d)N.O.T. .

12. The set of real values of x for which  $\frac{10x^2 + 17x - 34}{x^2 + 2x - 3} < 8$ , is

(a) 
$$(-5/2,2)$$

$$(b)(-3,-5/2)\cup(1,2)$$

$$(c)(-3,1)$$

(d)N.O.T. .

13. The set of real values of x for which  $\frac{8x^2 + 16x - 51}{(2x - 3)(x + 4)} < 3$ , is

$$(b)(-4,-3)$$

(c) 
$$\left(-4, -3\right) \cup \left(3/2, 5/2\right)$$
 (d) N.O.T.

14.If S is the set of all real x such that  $\frac{2x}{2x^2+5x+2} > \frac{1}{x+1}$ , then S is equal to

(a) 
$$(-2, -1)$$

$$(b)(-2)$$

$$(-2/3,-1/2)$$

(b) 
$$\left(-2/3,0\right)$$
 (c)  $\left(-2/3,-1/2\right)$  (d)  $\left(-2,-1\right) \cup \left(-2/3,-1/2\right)$ .

15. The solution set of  $x^2 + 2 \le 3x \le 2x^2 - 5$ , is

(b) 
$$[1, 2]$$

(c) 
$$\left(-\infty, -1\right] \cup \left[5/2, \infty\right)$$
 (d)N.O.T. .

16. The greatest negative integer satisfying  $x^2 - 4x - 77 < 0$  and  $x^2 > 4$ , is

$$(a)-4$$

(d)N.O.T.

17. If  $4 \le x \le 9$ , then

$$(a)(x-4)(x-9) \le 0$$

(b) 
$$(x-4)(x-9) \ge 0$$

$$(c)(x-4)(x-9)<0$$

$$(a)(x-4)(x-9) \le 0$$
  $(b)(x-4)(x-9) \ge 0$   $(c)(x-4)(x-9) < 0$   $(d)(x-4)(x-9) > 0$ .

18. The set of all integral values of x for which  $5x-1<(x+1)^2<7x-3$ , is

$$(b){1}$$

$$(c){2}$$

$$(d)$$
  $\{3\}$ 

19. If x is an integer satisfying  $x^2 - 6x + 5 \le 0$  and  $x^2 - 2x > 0$ , then the number of possible values of x, is (d)infinite.

**Problem Based on Modulus** 

Solve the following equations:-

$$(1)|x-2|=3$$

(2) 
$$|x^2 - 4x| = 12$$

$$(3) \left| 2x + 5 \right| = x$$

(4) 
$$|x^2 - 6x + 3| = 1$$

$$(5) x^2 - 3|x| + 2 = 0$$

(6) 
$$x^2 + |x| - 6 = 0$$

(7) 
$$x^2 - 5|x| + 6 = 0$$
 (8)  $|x^2 - 5x + 6| = x - 3$ 

$$(9) \left| x^2 + 2x - 8 \right| + x - 2 = 0 \quad (10) \left| x^2 + 4x + 3 \right| + 2x + 5 = 0 \quad (11) 3^{|3x - 4|} = 9^{2x - 2} \quad (12) \left| 6x^2 - 5x + 1 \right| = 5x^2 - 6x + 2$$

1. What is the value of  $2\log_8 2 - \frac{1}{3}\log_3 9$ ?

1. What is the value of 210g <sub>8</sub>2 
$$\frac{10g_3}{3}$$

2. What is the value of  $\log_y x^5 \log_x y^2 \log_z z^3$ ?

3.If  $\log_{16} x + \log_4 x + \log_2 x = 14$ , then x is equal to

4. What is 
$$\log\left(a+\sqrt{a^2+1}\right)+\log\left(\frac{1}{a+\sqrt{a^2+1}}\right)$$
 equal to

(d) 
$$\frac{1}{2}$$
.

5. 
$$\frac{1}{\log_{xy} xyz} + \frac{1}{\log_{yz} xyz} + \frac{1}{\log_{zx} xyz}$$
 is equal to

6.If  $a^x = b, b^y = c, c^z = a$ , then the value of xyz is equal to

7.If 
$$\frac{1}{\log_a x} + \frac{1}{\log_a x} = \frac{2}{\log_b x}$$
, then a,b and c are in

8.If  $(\log_3 x)(\log_x 2x)(\log_{2x} y) = \log_x x^2$ , then what is the value of y?

9.If  $x = \log_{2a} a$ ,  $y = \log_{3a} 2a$  and  $z = \log_{4a} 3a$ , then xyz + 1 =

(a) 
$$2 vz$$

(b) 
$$2xy$$

(c) 
$$2zx$$

10.If 
$$a,b,c$$
 are positive real numbers then 
$$\frac{1}{\log_a bc + 1} + \frac{1}{\log_b ca + 1} + \frac{1}{\log_c ab + 1} = .$$

11.If  $a = \log 2, b = \log 3, c = \log 7$  and  $6^x = 7^{x+4}$ , then x =

(a) 
$$\frac{4b}{c+a-b}$$

(b) 
$$\frac{4c}{a+b-c}$$

(c) 
$$\frac{4b}{c-a-b}$$

(d) 
$$\frac{4a}{a+b-c}$$
.

12.If 
$$a^2 + b^2 - c^2 = 0$$
, then  $\frac{1}{\log_{10} b} + \frac{1}{\log_{10} b} =$ 

$$(d)-2$$
 .

13.If 
$$\log x = \frac{\log y}{2} = \frac{\log z}{5}$$
, then  $x^4 y^3 z^{-2} =$ 

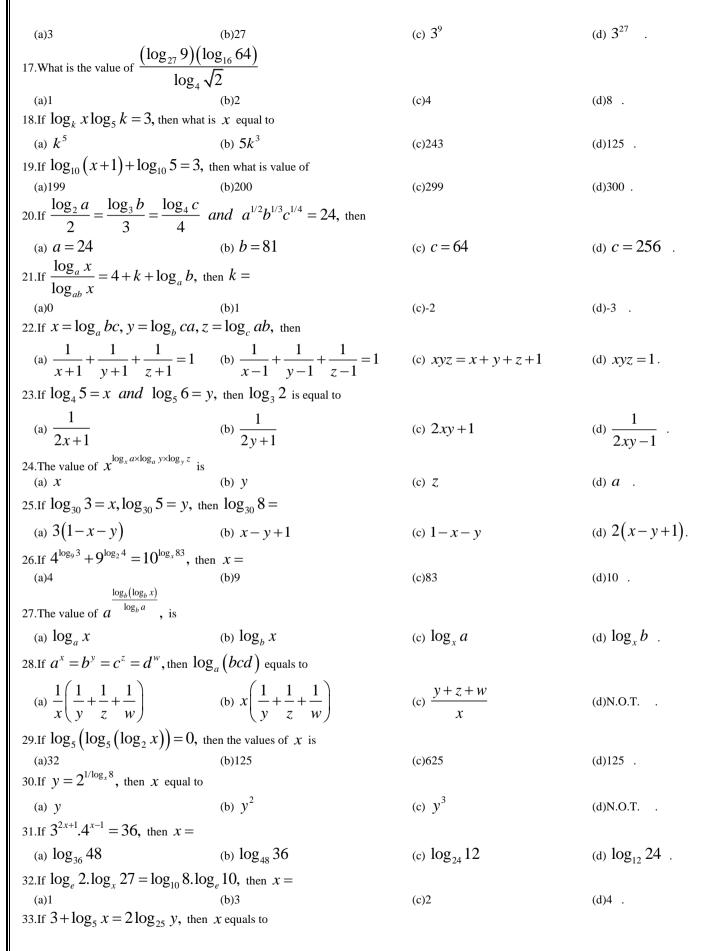
$$(d)0$$
.

14.If 
$$\frac{\log x}{2a+3b-5c} = \frac{\log y}{2b+3c-5a} = \frac{\log z}{2c+3a-5b}$$
 then  $xyz = \frac{\log z}{2c+3a-5b}$ 

15. What is the value of 
$$\log_{10} \left( \frac{9}{8} \right) - \log_{10} \left( \frac{27}{32} \right) + \log_{10} \left( \frac{3}{4} \right)$$

16.If 
$$\log_3 \left[\log_3 \left(\log_3 x\right)\right] = \log_3 3$$
, then what is the value of  $x$ 

..6..



..7..

(a) 
$$\frac{y}{125}$$
34.If  $5^{3x^2 \log x}$ 

(b) 
$$\frac{y}{25}$$

(c) 
$$\frac{y^2}{625}$$

(d) 
$$3 - \frac{y^2}{25}$$
.

34.If  $5^{3x^2 \log_{10} 2} = 2^{\left(x + \frac{1}{2}\right) \log_{10} 25}$ , then x equals to

(a) 
$$1.-3$$

(c) 
$$1, -\frac{1}{2}$$

(d) 
$$-\frac{1}{3}$$
,1.

35. The value of  $\log_2 \log_2 \log_4 256 + 2\log_{\sqrt{2}} 2$ , is

36.If  $a = 1 + \log_x yz$ ,  $b = 1 + \log_y zx$ ,  $c = 1 + \log_z xy$ , then  $ab + bc + ca = 1 + \log_z xy$ 

(d) 
$$a^2 + b^2 + c^2$$
.

37.If  $\log(2a-3b) = \log a - \log b$ , then a =

(a) 
$$\frac{3b^2}{2b-1}$$

(b) 
$$\frac{3b}{2b-1}$$

(c) 
$$\frac{b^2}{2b+1}$$

(d) 
$$\frac{3b^2}{2b+1}$$
.

38.If  $\frac{\log 3}{x-y} = \frac{\log 5}{y-z} = \frac{\log 7}{z-x}$ , then  $3^{x+y}5^{y+z}7^{z+x} = \frac{\log 7}{z-x}$ 

39.If  $\log(x+y) = \log 2 + \frac{1}{2}\log x + \frac{1}{2}\log y$ , then.

(a) 
$$x + y = 0$$

(b) 
$$x - y = 0$$

(c) 
$$xy = 1$$

(d) 
$$x^2 + xy + y^2 = 0$$

40.If  $\log_a ab = x$ , then the value of  $\log_b ab$  is

(a) 
$$\frac{x-1}{x}$$

(b) 
$$\frac{x}{x-1}$$

(c) 
$$\frac{x}{x+1}$$

(d) 
$$\frac{x+1}{x}$$
.

41.If  $\log_{12} 27 = a$ , then  $\log_{6} 16$  is equal to

(a) 
$$2.\frac{3-a}{3+a}$$

(b) 
$$3.\frac{3-a}{3+a}$$

(c) 
$$4.\frac{3-a}{3+a}$$

42. The value of  $(yz)^{\log y - \log z} \times (zx)^{\log z - \log x} (xy)^{\log x - \log y}$  is equal to

43.If  $\frac{\log x}{b-c} = \frac{\log y}{c-a} = \frac{\log z}{a-b}$ , then  $x^a.y^b.z^c$  is equal to

(d) N.O.T .

44.If  $a = \log_{24} 12, b = \log_{36} 24, c = \log_{48} 36$ . Then 1 + abc is equal to

45.If a,b,c are positive real numbers, then  $a^{\log b - \log c} \times b^{\log c - \log a} \times c^{\log a - \log b} =$ 

46.If a, b, c are three consecutive positive integers, then  $\log(1+ca) =$ 

(b) 
$$\log\left(\frac{b}{2}\right)$$

(c) 
$$\log(2b)$$

(d) 
$$2\log b$$
 .

47.If  $\frac{1}{\log_2 a} + \frac{1}{\log_4 a} + \frac{1}{\log_8 a} + \frac{1}{\log_1 a} + \dots + \frac{1}{\log_{\frac{n}{a}} a} = \frac{n(n+1)}{\lambda}$ , then  $\lambda$  equals

(a) 
$$\log_2 a$$

(b) 
$$\log_a 4$$

(c) 
$$\log_2 a$$

48. The solution set of the equation  $\log_x 2.\log_{2x} 2 = \log_{4x} 2$ , is

(a) 
$$\left\{2^{-\sqrt{2}}, 2\sqrt{2}\right\}$$

(b) 
$$\left\{\frac{1}{2}, 2\right\}$$

(c) 
$$\left\{\frac{1}{4}, 4\right\}$$

49.If  $\log_x (4x^{\log_5 x} + 5) = 2\log_5 x$ , then x equals to

(b) 
$$-1,5$$

(d) 
$$5, \frac{1}{5}$$
.

**Greatest integer function** 

Solve the following equations:-

1. 
$$[x]-2=0$$
 2.  $[x]^2-5[x]+6=0$ 

3. 
$$[x] + 5 = 0$$

3. 
$$[x] + 5 = 0$$
 4.  $[x]^2 - 2[x] - 15 = 0$ 

5. 
$$[x]^2 = [x+6]$$

6. 
$$2[x] = [x+3]$$

7. 
$$[x]^2 - [x] - 20 =$$

7. 
$$[x]^2 - [x] - 20 = 0$$
 8.  $[x]^2 - 4[x] - 12 = 0$ 

9.If [x] denotes the greatest integer less than or equal to x, then the solutions of the equation 2x-2[x]=1 are

(a) 
$$x = n + \frac{1}{2}, n \in N$$

(b) 
$$x = n - \frac{1}{2}, n \in N$$

(a) 
$$x = n + \frac{1}{2}, n \in \mathbb{N}$$
 (b)  $x = n - \frac{1}{2}, n \in \mathbb{N}$  (c)  $x = n + \frac{1}{2}, n \in \mathbb{Z}$  (d)  $n < x < n + 1, n \in \mathbb{Z}$ 

10.If 0 < x < 1000 and [x] denotes the greatest integer less than or equal to x, then the number of possible values of x satisfying

$$\left[\frac{x}{2}\right] + \left[\frac{x}{3}\right] + \left[\frac{x}{5}\right] = \frac{31}{30}x, \text{ is}$$

(d)N.O.T. .

11.If  $[x]^2 = [x+2]$ , where [x] = the greatest integer less than or equal to x, then x must be such that

(a) 
$$x = 2, -1$$

(b) 
$$x \in [2,3)$$

(c) 
$$x \in [-1, 0)$$

$$(d)[-1,0)\cup[2,3)$$

12. The value of  $\left[\sin x\right] + \left[1 + \sin x\right] + \left[2 + \sin x\right]$  in  $x \in \left(\pi, 3\pi/2\right]$  can be ([.] is the greatest integer function ) can be (c)2(d)3.

# **Answer Sheet**

Inequality

$$1.(a)(-4,4)$$
 (b)

$$(c)(-\infty,2)\cup(3,\infty)$$

$$(d)(3,7)$$

$$(g)\left(-\infty,\frac{1}{3}\right]\cup\left[3,\infty\right)$$

(h) 
$$\phi$$

$$5.(a)(-\infty,-1)\cup(0,\infty)$$

(b) 
$$\left[ -\frac{1}{2}, 5 \right]$$
 (c)

$$(d)(-\infty,1)\cup(2,\infty)$$

$$(e)(-\infty,2)\cup(3,5)$$

$$\text{(d)} \left(-\infty,1\right) \cup \left(2,\infty\right) \qquad \text{(e)} \left(-\infty,2\right) \cup \left(3,5\right) \qquad \text{(f)} \left(2,3\right) \cup \left(5,7\right) \quad \text{(g)} \left(-5,-3\right] \cup \left(2,7\right] \quad \text{(h)} \left(-\infty,-\frac{4}{3}\right) \cup \left[-1,\infty\right)$$

$$[-5,-3] \cup (2,7]$$

$$(-\infty, -\frac{1}{3}) \cup [-1, -1]$$

Modulus

1.5, -1

2. **-2**, **6** 3.No solution

 $4.3 \pm \sqrt{7}, 3 \pm \sqrt{5}$ 

7. 
$$\pm 2, \pm 3$$
 8.3 9.  $\{-5, -3, 2\}$  10.  $-4, -1 - \sqrt{3}$  11.  $\frac{8}{7}$  12.  $\frac{-1 \pm \sqrt{5}}{2}$ 

13.c

$$12. \frac{-1 \pm \sqrt{5}}{2}$$

Logarithm

**Greatest integer function** 

$$1.[2,3) \ 2.[2,4) \ 3.[-5,-4)$$
  $4.[-3,-2) \cup [5,6)$   $5.[-2,-1) \cup [3,4)$   $6.[3,4)$ 

$$4.[-3,-2) \cup [5,6)$$

$$5.[-2,-1)\cup[3,4)$$

$$7.[-4,-3)\cup[5,6)$$
  $8.[-2,-1)\cup[6,7)$  9.c

$$8.[-2,-1)\cup[6,7)$$